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1 Functions

Definition 1.1 (Functions). A function from a set A to a set B, for exam-
ple f : A → B, is a rule/map which assigns elements in B to each element
in A.

1.1 Properties

Definition 1.2 (Injective Functions). For an injective function f : A → B,
∀ a, b ∈ A, if f(a) = f(b), then a = b.

Note. An injective function is known as being one-to-one.

Note. If a function is injective, it will pass the Horizontal Line Test. If a
function is not injective, its domain may be restricted so that the restriction of
the function is injective and, therefore, invertible (assuming it is also surjective).

Definition 1.3 (Surjective Functions). For a surjective function f : A →
B, ∀ y ∈ B, ∃x ∈ A such that f(x) = y.

Note. In other words, every element from the codomain B is mapped to (from
at least one input in the domain A).

Definition 1.4 (Bijective Functions). A function is bijective if and only
if it is injective and subjective.

1.2 Composition

Definition 1.5 (Function Composition). The composite function h is the
result of the composition of function g in function f :

h(x) = f(g(x)) = (f ◦ g)(x).

Note. Suppose the function g is composed in function f , then the domain of
the composite function f(g(x)) = (f ◦g)(x) is all x in the domain of g such that
g(x) is in the domain of f .

1.3 Inverses

Definition 1.6 (Inverse Functions). A function g : B → A is said to be
the inverse of the function f : A → B if

∀x ∈ A, g(f(x)) = x.
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Definition 1.7 (Invertible Functions). A function is said to be invertible
if it is bijective.

Note. Inverses are unique.

Theorem 1.1 (Solving for Inverses). The inverse of a function f is found
by solving for x in the relation y = f(x).

1.4 Piecewise Defined Functions

Definition 1.8 (Absolute Value Function). The absolute value function is
a piecewise-defined function as

|x| =

{
x, x ≥ 0

−x, x < 0
.

Definition 1.9 (Heaviside Function (Unit Step Function)). The Heaviside
function is a piecewise-defined function as

H(x) =

{
1, x ≥ 0

0, x < 0
.

Example 1.1 (Heaviside Function).

f(x) ·H(x) =

{
f(x), x ≥ 0

0, x < 0
.

Example 1.2. Let a ∈ R. Consider the function H(x− a):

H(x− a) =

{
1, x− a ≥ 0

0, x− a < 0

=

{
1, x ≥ a

0, x < a
.

5
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2 Continuity and Limits

Definition 2.1 (End Behaviour Models). A function g is said to be the
end behaviour model of a function f if g(x) models the behaviour of f(x)
as x → ±∞. Mathematically, g is an end behaviour model for f if and only
if

lim
x→±∞

f(x)

g(x)
= 1.

Remark. A function can have different left and right end behaviour models.

2.1 Continuity

Definition 2.2 (Point Continuity). A function f is continuous at an inte-
rior point if and only if

lim
x→c

f(x) = f(c).

A function f is continuous at a left endpoint a or a right endpoint b of a
closed interval if and only if

lim
x→a+

f(x) = f(a) or lim
x→b−

f(x) = f(b), respectively.

A function is said to be continuous on an interval if and only if every point on
that interval is continuous.

Theorem 2.1 (Intermediate Value Theorem). If a function f is continuous
on the closed interval [a, b] then it takes on every value between f(a) and
f(b).

In other words, for all numbers k between f(a) and f(b), there exists at
least one point c ∈ (a, b) such that f(c) = k.

2.2 Composite Functions

Theorem 2.2 (Continuity of Composite Functions). If a function g is con-
tinuous at c and function f is continuous at g(c), then the composite function
given by f ◦ g is continuous at c.

6
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Theorem 2.3 (Limits of Composite Functions). The limit of composite
function f ◦ g is

lim
x→c

(f ◦ g)(x) = lim
x→c

f(g(x)) = f
(
lim
x→c

g(x)
)
,

if and only if

1. limx→c g(x) exists, and

2. f is continuous at limx→c g(x).

2.3 Limit Evaluation Techniques

Theorem 2.4 (The Squeeze Theorem). Let h, f , and g be real-valued
functions. If h(x) ≤ f(x) ≤ g(x) for all x in an interval containing c, except
possibly at c itself, and if

lim
x→c

h(x) = L = lim
x→c

g(x),

then
lim
x→c

f(x) = L.

Theorem 2.5 (l’Hôpital’s Rule). Let c be a real number. Let f and g
be real-valued functions, differentiable on an interval except possibly at c.
l’Hôpital’s Rule states that, if

lim
x→c

f(x) = lim
x→c

g(x) = 0 or ±∞,

then
lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)

if the limit exists (or is ±∞).

Remark. A proof of this can be found in Appendix A.1.

If direct subsitution into a limit results in different indeterminate forms, they
can sometimes be algebraicly manipulated into 0/0 or ∞/∞ so that l’Hôpital’s
rule can be applied.

Definition 2.3 (Indeterminate Forms). The indeterminate forms are:

0

0
,

∞
∞

, 0×∞, ∞−∞, 00, 1∞, and ∞0.
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3 Derivatives

Definition 3.1 (Limit Definition of the Derivative). The derivative of a
differentiable function f at x is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

or
f ′(x) = lim

c→x

f(c)− f(x)

c− x
.

Remark. A function can have different left and right derivatives at a point
(e.g. f(x) = |x| at x = 0).

3.1 Techniques of Differentiation

Definition 3.2 (Product Rule). If the functions f and g are differentiable,
then

d

dx
(f · g) = g · d

dx
f + f · d

dx
g.

In Lagrange’s notation (prime notation),

(f · g)′ = g · f ′ + f · g′.

Definition 3.3 (Quotient Rule). If the functions f and g are differentiable
and g ̸= 0, then

d

dx

(
f

g

)
=

g · d
dxf − f · d

dxg

g2
.

In Lagrange’s notation (prime notation),(
f

g

)′

=
g · f ′ − f · g′

g2
.

Definition 3.4 (Implicit Differentiation). To differentiate implicit expres-
sions, differentiate both sides of the equation then collect and isolate dy/dx.

Definition 3.5 (Derivative of ax). The derivative of an exponential func-
tion is

d

dx
ax = ax · ln a.

Remark. A proof of this is available in Appendix A.2.

8
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Definition 3.6 (Derivative of ex). The derivative of the natural exponen-
tial function is

d

dx
ex = ex · ln e = ex.

Remark. An alternative proof of this is available in Appendix A.3.

Definition 3.7 (Derivative of loga x). The derivative of a logarithmic func-
tion is

d

dx
loga x =

1

x
· 1

ln a
.

Remark. A proof of this is available in Appendix A.4.

Definition 3.8 (Derivative of lnx). The derivative of the natural loga-
rithm is

d

dx
lnx =

d

dx
loge x =

1

x
· 1

ln e
=

1

x
.

4 Applications of Differentiation

Theorem 4.1 (Mean Value Theorem). If a function f is continuous on
the closed interval [a, b] and differentiable on the open interval (a, b), then
there exists at least one point c ∈ (a, b) such that the instantaneous rate of
change is equal to the average rate of change,

f ′(c) =
f(b)− f(a)

b− a
.

Corollary 4.1 (Increasing and Decreasing Functions). Let a function f be
continuous on [a, b] and differentiable on (a, b). Then, if f ′(x) > 0 (f ′(x) <
0) for all x ∈ (a, b), f increases (decreases) on [a, b].

Remark. A proof of this can be found in Appendix A.5.

Theorem 4.2 (Concavity — The First Derivative). The differentiable
function f is concave up (down) on an interval I if and only if f ′ is increasing
(decreasing) on I.

Theorem 4.3 (Concavity — The Second Derivative). The twice-differen-
tiable function f is concave up (down) at x if and only if f ′′(x) > 0 (f ′′(x) <
0).

9
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Remark. A function is concave on an interval if the theorem holds for all x in
that interval.

4.1 Extrema

Theorem 4.4 (Extreme Value Theorem). If a function f is continuous on
a closed interval [a, b], then f attains both a maximum and minimum on
that interval.

Definition 4.1 (Critical Points). For a function f , if f ′(c) = 0 or f ′(c)
does not exist, then c is a critical point.

Remark. Endpoints of a closed interval are not considered critical points, but
may still be extrema.

Definition 4.2 (First Derivative Test). Let the function f is continuous
on [a, b] and differentiable on (a, b).

At a critical point c: if f ′(x) > 0 (f ′(x) < 0) for some x < c and f ′(x) < 0
(f ′(x) > 0) for some x > c, then there is a local maximum (minimum) at c.

At a left endpoint a: if f ′(x) < 0 (f ′(x) > 0) for some x > a, then there is
local maximum (minimum) at a.

At a right endpoint b: if f ′(x) > 0 (f ′(x) < 0) for some x < b, then there is
local maximum (minimum) at b.

If the domain of a function is an open interval, there are no endpoints to classify
as extrema.

Definition 4.3 (Inflection Points). On the graph of a function, y = f(x),
a point (c, f(c)) is a point of inflection if the concavity (the sign of f ′′)
changes at c.

Remark. Inflection points can occur when f ′′(x) = 0 or f ′′(x) does not exist.

Definition 4.4 (Second Derivative Test). Let the function f be twice-
differentiable at c. If f ′(c) = 0 and f ′′(c) < 0 (f ′′(c) > 0), f is concave
down (up), then f has a local maximum (minimum) at c.

Remark. If f ′′(c) = 0 or f ′′(c) does not exist, then the Second Derivative Test
fails and you must fall back to the First Derivative Test.

10
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5 Integrals

Theorem 5.1 (Fundamental Theorem of Calculus: Antiderivative). If f
is continuous on [a, b] then the function

F (x) =

∫ x

a

f(t) dt

is differentiable for all x ∈ (a, b), and

d

dx
F (x) =

d

dx

∫ x

a

f(t) dt = f(x).

Definition 5.1 (Indefinite Integrals). F (x) =
∫
f(x) dx is a family of func-

tions such that d
dxF (x) = f(x).

Theorem 5.2 (Fundamental Theorem of Calculus: Evaluation). Let f be
a continuous function on [a, b] then the function, and F be a function such
that d

dxF (x) = f(x), then∫ b

a

f(t) dt = F (b)− F (a) = F (x)

∣∣∣∣b
a

.

5.1 Properties of Integrals

Theorem 5.3 (Max-Min Inequality). Let m be the minimum value of f
on [a, b] and M be the maximum value of f on [a, b], then

m(b− a) ≤
∫ b

a

f(x) dx ≤ M(b− a).

Theorem 5.4 (Domination). If f(x) ≥ g(x) for all x ∈ [a, b], then∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx.

11
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Theorem 5.5 (Mean Value Theorem for Definite Integrals). If f is a con-
tinuous function on [a, b], then there exists at least one point c ∈ [a, b] such
that

f(c) =
1

b− a

∫ b

a

f(x) dx.

In other words, the continuous function f attains its average value at least once
on [a, b].

5.2 Techniques of Integration

Theorem 5.6 (Integration by Substitution). Let u = g(x) be a continuous
and differentiable function over an interval, let f be continuous over the
range of g on that interval, and let F be a function such that d

dxF (x) = f(x).
Then, ∫

f(g(x)) g′(x) dx =

∫
f(u) du.

Proof 5.1 (Integration by Substitution). Let u = g(x) be a continuous and
differentiable function over an interval, and let f be a continuous function
over the range of g on that interval.

Since

u = g(x) =⇒ du = g′(x) dx,

then ∫
f(g(x)︸︷︷︸

u

) g′(x) dx︸ ︷︷ ︸
du

=

∫
f(u) du.

■

Theorem 5.7 (Integration By Parts). Let u and v be continuous and dif-
ferentiable functions, then∫

uv′ dx =

∫
(uv)′ dx−

∫
vu′ dx

= uv −
∫

vu′ dx.

12
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Proof 5.2 (Integration by Parts). Let u and v be continuous and differen-
tiable functions. Then, by the Product Rule, we have

(uv)′ = uv = vu′ + uv′ =⇒ uv′ = (uv)′ − vu′.

Integrating both sides with respect to x,∫
uv′ dx =

∫
(uv)′ dx−

∫
vu′ dx

= uv −
∫

vu′ dx.

■

6 Applications of Integration

Theorem 6.1 (Length of Curves). Let f be function that is continuous
on [a, b] and differentiable on (a, b). Then, the length of the curve on [a, b]
is given by

L =

∫ b

a

√
1 + (f ′(x))2 dx.

Remark. See the proof/derivation in Appendix A.6.

6.1 Volume of Solids of Revolution

Theorem 6.2 (Volume of Solids of Revolution: Disk/Washer Method).
The volume of the solid revolved on [a, b] around an axis parallel to the
x-axis is given by

V =

∫ b

a

π((R(x))2 − (r(x))2) dx,

where R(x) is the outer radius and r(x) is the inner radius of the washer.

Remark. The disk method is similar to the washer method, except the inner
radius r(x) is 0.

13
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Theorem 6.3 (Volume of Solids of Revolution: Cylindrical Shell Method).
The volume of the solid revolved on [a, b] around an axis perpendicular to

the x-axis on is given by

V =

∫ b

a

2π r(x)h(x) dx,

where r(x) is the radius and h(x) is the height of the cylinder.

Note that both the disk/washer and cylindrical shell methods can be performed
and then integrated with respect to the y-axis, which may be helpful for some
solids.

6.2 Improper Integrals

Definition 6.1 (Improper Integrals: Infinity). If f is continuous on [a,∞),
then the improper integral

∫∞
a

f(x) dx is defined as∫ ∞

a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx.

Similarly for (−∞, a], we define
∫ a

−∞ f(x) dx = limt→−∞
∫ a

t
f(x) dx.

If the limit exists, then we say that the integral converges, otherwise it
diverges.

Remark. For a continuous function f on [a,∞), if
∫∞
a

f(x) dx converges, we
must have limx→∞ f(x) = 0.

Remark. For a continuous function f on (−∞,∞), the improper integral∫∞
−∞ f(x) dx means we consider 2 improper integrals∫ ∞

−∞
f(x) dx =

∫ c

−∞
f(x) dx+

∫ ∞

c

f(x) dx

for some constant c.

The integral
∫∞
−∞ f(x) dx converges only if both

∫ c

−∞ f(x) dx and
∫∞
c

f(x) dx
converge.

14
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Definition 6.2 (Improper Integrals: Undefined Point). If a function f is
continuous at every point of the interval [a, b] except at a, then the improper
integral is defined as ∫ b

a

f(x) dx = lim
t→a+

∫ b

t

f(x) dx.

Similarly, if f is continuous at every point of the interval [a, b] except at b,
then the improper integral is defined as∫ b

a

f(x) dx = lim
t→b−

∫ t

a

f(x) dx.

If the limit exists, then we say that the integral converges, otherwise it
diverges.

Remark. If a function f is continuous on [a, b] except at a point c ∈ (a, b),
then ∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

15
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A Proofs
As I have not yet had formal education on proof writing, proofs in this document
are not intended to be rigorous or advanced.

Proof A.1 (l’Hôpital’s Rule — Simple Version). Let c be an element of
the real numbers system (R), and let f and g be real-valued functions,
differentiable at c.

Case: limx→c f(x) = limx→c g(x) = 0
Since f and g are differentiable at c, they are also continuous at c. By
definition, point continuity at c implies that limx→c f(x) = f(c) = 0 and
limx→c g(x) = g(c) = 0. So,

lim
x→c

f(x)

g(x)
= lim

x→c

f(x)
x−c

g(x)
x−c

= lim
x→c

f(x)−0
x−c

g(x)−0
x−c

= lim
x→c

f(x)−f(c)
x−c

g(x)−g(c)
x−c

= lim
x→c

f ′(x)

g′(x)
.

■

Proof A.2 (Derivative of ax). Let a be a constant. If we let y = ax then
dy/dx is its derivative. Using Implicit Differentiation:

ln y = ln ax

= x ln a

d

dx
ln y =

d

dx
x ln a

1

y

dy

dx
= ln a

dy

dx
= y ln a

= ax ln a.

■

16
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Proof A.3 (Derivative of ex). Using the Limit Definition of the Derivative,
it is possible to determine the derivative of ex.

d

dx
ex = lim

h→0

ex+h − ex

h

= lim
h→0

exeh − ex

h

= lim
h→0

ex(eh − 1)

h

= ex · lim
h→0

eh − 1

h

= ex

limh→0
eh−1
h = 1 can be determined graphically (or through l’Hôpital’s

Rule). ■

Proof A.4 (Derivative of loga x). Implicit Differentiation can be used to
dermine the derivative of y = loga x.

y = loga x

x = ay

d

dx
x =

d

dx
ay

1 = ay ln a · dy
dx

dy

dx
=

1

ay
· 1

ln a

=
1

aloga x
· 1

ln a

=
1

x
· 1

ln a
.

■

Proof A.5 (Increasing and Decreasing Functions). Let f be continuous on
[a, b] and differentiable on (a, b), and let x1 and x2 be any two points on
[a, b] with x1 < x2. Applying the Mean Value Theorem to f on [x1, x2] gives

f(x2)− f(x1) = f ′(c)(x2 − x1)

for some c in (x1, x2).

The left and right side of the equation must be equal and have the same
sign. Since x1 < x2 =⇒ x2 − x1 > 0. This means the left side must have

17
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the same sign as f ′(c). We can conclude the following:

(a) if f(x2) > f(x1), then f(x2)− f(x1) > 0 and f ′(c) > 0, and

(b) if f(x2) < f(x1), then f(x2)− f(x1) < 0 and f ′(c) < 0.

So, if f ′(c) > 0 for all c in (a, b), then f(x2) > f(x1) (for all x2 and x1 in
[a, b] with x1 < x2), meaning f is increasing on [a, b]. A similar procedure
applies for f ′(c) < 0. ■

Proof A.6 (Length of Curves). Let y = f(x) be a continuous on [a, b] and
differentiable on (a, b). Splitting the interval into n subintervals of equal
length, the length of the curve on the ith subinterval is given by

∆Li =
√
(∆xi)2 + (∆yi)2

=

√
1 +

(
∆yi
∆xi

)2

·∆xi.

So, the length on the entire interval is

L ≈
n∑

i=1

∆Li =

n∑
i=1

√
1 +

(
∆yi
∆xi

)2

·∆xi.

By the Mean Value Theorem, we have that there exists an x∗
i ∈ (xi−1, xi)

such that
f ′(x∗

i ) =
f(xi)− f(xi−1)

xi − xi−1
=

∆yi
∆xi

.

Then, by the definition of integrals,

L = lim
n→∞

n∑
i=1

√
1 + (f ′(x∗

i ))
2 ·∆xi

=

∫ b

a

√
1 + (f ′(x))2 dx.

■
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