Calculus I

Hussein Elguindi helguind@uwaterloo.ca elguindi.xyz

December 6, 2022

This document started as an accumulating note over the course of high school AP Calculus. However, it has evolved into my university Calculus I reference notes. The content of this document is loosely based on the University of Waterloo's MATH 117 course. It is intended to be a condensed, yet thorough, combination of every source I used to learn the material.

For any suggestions, feedback, or comments, please email me at the above-stated address.

Contents

1	Functions	4
	1.1 Properties	4
	1.2 Composition	4
	1.3 Inverses	4
	1.4 Piecewise Defined Functions	5
2	Continuity and Limits	6
	2.1 Continuity	6
	2.2 Composite Functions	6
	2.3 Limit Evaluation Techniques	7
3	Derivatives	8
	3.1 Techniques of Differentiation	8
4	Applications of Differentiation	9
	4.1 Extrema	10
5	Integrals	11
	5.1 Properties of Integrals	11
	5.2 Techniques of Integration	12
6	Applications of Integration	13
	6.1 Volume of Solids of Revolution	13
	6.2 Improper Integrals	14
\mathbf{A}	Proofs	16

Definitions

1.1	Functions	4
1.2	Injective Functions	4
1.3	Surjective Functions	4
1.4	Bijective Functions	4
1.5	Function Composition	4
1.6	Inverse Functions	4
1.7	Invertible Functions	5
1.8	Absolute Value Function	5
1.9	Heaviside Function (Unit Step Function)	5
2.1	End Behaviour Models	6
2.2	Point Continuity	6
2.3	Indeterminate Forms	7
3.1	Limit Definition of the Derivative	8
3.2	Product Rule	8
3.3	Quotient Rule	8

3.4	Implicit Differentiation	8
3.5	Derivative of a^x	8
3.6	Derivative of e^x	9
3.7	Derivative of $\log_a x$	9
3.8	Derivative of $\ln x$	9
4.1	Critical Points	10
4.2	First Derivative Test	10
4.3	Inflection Points	10
4.4	Second Derivative Test	10
5.1	Indefinite Integrals	11
6.1	Improper Integrals: Infinity	14
6.2	Improper Integrals: Undefined Point	15

Theorems

1.1	Solving for Inverses
2.1	Intermediate Value Theorem
2.2	Continuity of Composite Functions
2.3	Limits of Composite Functions
2.4	The Squeeze Theorem
2.5	l'Hôpital's Rule
4.1	Mean Value Theorem
4.2	Concavity — The First Derivative
4.3	Concavity — The Second Derivative
4.4	Extreme Value Theorem
5.1	Fundamental Theorem of Calculus: Antiderivative
5.2	Fundamental Theorem of Calculus: Evaluation 11
5.3	Max-Min Inequality 11
5.4	Domination
5.5	Mean Value Theorem for Definite Integrals 12
5.6	Integration by Substitution 12
5.7	Integration By Parts
6.1	Length of Curves
6.2	Volume of Solids of Revolution: Disk/Washer Method 13
6.3	Volume of Solids of Revolution: Cylindrical Shell Method 14

1 Functions

Definition 1.1 (Functions). A function from a set A to a set B, for example $f: A \to B$, is a rule/map which assigns elements in B to each element in A.

1.1 Properties

Definition 1.2 (Injective Functions). For an injective function $f: A \to B$, $\forall a, b \in A$, if f(a) = f(b), then a = b.

Note. An injective function is known as being one-to-one.

Note. If a function is injective, it will pass the Horizontal Line Test. If a function is not injective, its domain may be restricted so that the restriction of the function is injective and, therefore, invertible (assuming it is also surjective).

Definition 1.3 (Surjective Functions). For a surjective function $f: A \to B$, $\forall y \in B$, $\exists x \in A$ such that f(x) = y.

Note. In other words, every element from the codomain B is mapped to (from at least one input in the domain A).

Definition 1.4 (Bijective Functions). A function is bijective if and only if it is injective and subjective.

1.2 Composition

Definition 1.5 (Function Composition). The composite function h is the result of the composition of function g in function f:

$$h(x) = f(g(x)) = (f \circ g)(x).$$

Note. Suppose the function g is composed in function f, then the domain of the composite function $f(g(x)) = (f \circ g)(x)$ is all x in the domain of g such that g(x) is in the domain of f.

1.3 Inverses

Definition 1.6 (Inverse Functions). A function $g: B \to A$ is said to be the inverse of the function $f: A \to B$ if

$$\forall x \in A, \ g(f(x)) = x$$

Definition 1.7 (Invertible Functions). A function is said to be invertible if it is bijective.

Note. Inverses are unique.

Theorem 1.1 (Solving for Inverses). The inverse of a function f is found by solving for x in the relation y = f(x).

1.4 Piecewise Defined Functions

Definition 1.8 (Absolute Value Function). The absolute value function is a piecewise-defined function as

$$|x| = \begin{cases} x, & x \ge 0\\ -x, & x < 0 \end{cases}$$

Definition 1.9 (Heaviside Function (Unit Step Function)). The Heaviside function is a piecewise-defined function as

$$H(x) = \begin{cases} 1, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Example 1.1 (Heaviside Function).

$$f(x) \cdot H(x) = \begin{cases} f(x), & x \ge 0\\ 0, & x < 0 \end{cases}$$

Example 1.2. Let $a \in \mathbb{R}$. Consider the function H(x - a):

$$H(x-a) = \begin{cases} 1, & x-a \ge 0\\ 0, & x-a < 0 \end{cases}$$
$$= \begin{cases} 1, & x \ge a\\ 0, & x < a \end{cases}.$$

2 Continuity and Limits

Definition 2.1 (End Behaviour Models). A function g is said to be the end behaviour model of a function f if g(x) models the behaviour of f(x) as $x \to \pm \infty$. Mathematically, g is an end behaviour model for f if and only if

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = 1.$$

Remark. A function can have different left and right end behaviour models.

2.1 Continuity

Definition 2.2 (Point Continuity). A function f is continuous at an interior point if and only if

 $\lim_{x \to c} f(x) = f(c).$

A function f is continuous at a left endpoint a or a right endpoint b of a closed interval if and only if

$$\lim_{x \to a^+} f(x) = f(a) \quad \text{or} \quad \lim_{x \to b^-} f(x) = f(b), \quad \text{respectively}.$$

A function is said to be continuous on an interval if and only if every point on that interval is continuous.

Theorem 2.1 (Intermediate Value Theorem). If a function f is continuous on the closed interval [a, b] then it takes on every value between f(a) and f(b).

In other words, for all numbers k between f(a) and f(b), there exists at least one point $c \in (a, b)$ such that f(c) = k.

2.2 Composite Functions

Theorem 2.2 (Continuity of Composite Functions). If a function g is continuous at c and function f is continuous at g(c), then the composite function given by $f \circ g$ is continuous at c.

Theorem 2.3 (Limits of Composite Functions). The limit of composite function $f \circ g$ is

$$\lim_{x \to c} (f \circ g)(x) = \lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right),$$

if and only if

- 1. $\lim_{x\to c} g(x)$ exists, and
- 2. f is continuous at $\lim_{x\to c} g(x)$.

2.3 Limit Evaluation Techniques

Theorem 2.4 (The Squeeze Theorem). Let h, f, and g be real-valued functions. If $h(x) \leq f(x) \leq g(x)$ for all x in an interval containing c, except possibly at c itself, and if

$$\lim_{x \to \infty} h(x) = L = \lim_{x \to \infty} g(x),$$

then

$$\lim_{x \to c} f(x) = L$$

Theorem 2.5 (l'Hôpital's Rule). Let c be a real number. Let f and g be real-valued functions, differentiable on an interval except possibly at c. l'Hôpital's Rule states that, if

$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0 \text{ or } \pm \infty,$$

then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

if the limit exists (or is $\pm \infty$).

Remark. A proof of this can be found in Appendix A.1.

If direct substitution into a limit results in different indeterminate forms, they can sometimes be algebraicly manipulated into 0/0 or ∞/∞ so that l'Hôpital's rule can be applied.

Definition 2.3 (Indeterminate Forms). The indeterminate forms are: $\frac{0}{0}, \quad \frac{\infty}{\infty}, \quad 0 \times \infty, \quad \infty - \infty, \quad 0^0, \quad 1^{\infty}, \text{ and } \infty^0.$

3 Derivatives

Definition 3.1 (Limit Definition of the Derivative). The derivative of a differentiable function f at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

or

$$f'(x) = \lim_{c \to x} \frac{f(c) - f(x)}{c - x}$$

Remark. A function can have different left and right derivatives at a point (e.g. f(x) = |x| at x = 0).

3.1 Techniques of Differentiation

1

Definition 3.2 (Product Rule). If the functions f and g are differentiable, then

$$\frac{d}{dx}(f \cdot g) = g \cdot \frac{d}{dx}f + f \cdot \frac{d}{dx}g$$

In Lagrange's notation (prime notation),

$$(f \cdot g)' = g \cdot f' + f \cdot g'.$$

Definition 3.3 (Quotient Rule). If the functions f and g are differentiable and $g \neq 0$, then

$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{g \cdot \frac{d}{dx}f - f \cdot \frac{d}{dx}g}{g^2}$$

In Lagrange's notation (prime notation),

$$\left(\frac{f}{g}\right)' = \frac{g \cdot f' - f \cdot g'}{g^2}$$

Definition 3.4 (Implicit Differentiation). To differentiate implicit expressions, differentiate both sides of the equation then collect and isolate dy/dx.

Definition 3.5 (Derivative of a^x). The derivative of an exponential function is d = a + b

$$\frac{a}{dx}a^x = a^x \cdot \ln a$$

Remark. A proof of this is available in Appendix A.2.

Definition 3.6 (Derivative of e^x). The derivative of the natural exponential function is

 $\frac{d}{dx}e^x = e^x \cdot \ln e = e^x.$

Remark. An alternative proof of this is available in Appendix A.3.

Definition 3.7 (Derivative of $\log_a x$). The derivative of a logarithmic function is $\frac{d}{dx}\log_a x = \frac{1}{x} \cdot \frac{1}{\ln a}.$

Remark. A proof of this is available in Appendix A.4.

Definition 3.8 (Derivative of $\ln x$). The derivative of the natural logarithm is $d \qquad d \qquad 1 \qquad 1 \qquad 1$

 $\frac{d}{dx}\ln x = \frac{d}{dx}\log_e x = \frac{1}{x} \cdot \frac{1}{\ln e} = \frac{1}{x}.$

4 Applications of Differentiation

Theorem 4.1 (Mean Value Theorem). If a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one point $c \in (a, b)$ such that the instantaneous rate of change is equal to the average rate of change,

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Corollary 4.1 (Increasing and Decreasing Functions). Let a function f be continuous on [a, b] and differentiable on (a, b). Then, if f'(x) > 0 (f'(x) < 0) for all $x \in (a, b)$, f increases (decreases) on [a, b].

Remark. A proof of this can be found in Appendix A.5.

Theorem 4.2 (Concavity — The First Derivative). The differentiable function f is concave up (down) on an interval I if and only if f' is increasing (decreasing) on I.

Theorem 4.3 (Concavity — The Second Derivative). The twice-differentiable function f is concave up (down) at x if and only if f''(x) > 0 (f''(x) < 0). **Remark.** A function is concave on an interval if the theorem holds for all x in that interval.

4.1 Extrema

Theorem 4.4 (Extreme Value Theorem). If a function f is continuous on a closed interval [a, b], then f attains both a maximum and minimum on that interval.

Definition 4.1 (Critical Points). For a function f, if f'(c) = 0 or f'(c) does not exist, then c is a critical point.

Remark. Endpoints of a closed interval are not considered critical points, but may still be extrema.

Definition 4.2 (First Derivative Test). Let the function f is continuous on [a, b] and differentiable on (a, b).

At a critical point c: if f'(x) > 0 (f'(x) < 0) for some x < c and f'(x) < 0 (f'(x) > 0) for some x > c, then there is a local maximum (minimum) at c.

At a left endpoint a: if f'(x) < 0 (f'(x) > 0) for some x > a, then there is local maximum (minimum) at a.

At a right endpoint b: if f'(x) > 0 (f'(x) < 0) for some x < b, then there is local maximum (minimum) at b.

If the domain of a function is an open interval, there are no endpoints to classify as extrema.

Definition 4.3 (Inflection Points). On the graph of a function, y = f(x), a point (c, f(c)) is a point of inflection if the concavity (the sign of f'') changes at c.

Remark. Inflection points can occur when f''(x) = 0 or f''(x) does not exist.

Definition 4.4 (Second Derivative Test). Let the function f be twicedifferentiable at c. If f'(c) = 0 and f''(c) < 0 (f''(c) > 0), f is concave down (up), then f has a local maximum (minimum) at c.

Remark. If f''(c) = 0 or f''(c) does not exist, then the Second Derivative Test fails and you must fall back to the First Derivative Test.

5 Integrals

Theorem 5.1 (Fundamental Theorem of Calculus: Antiderivative). If f is continuous on [a, b] then the function

$$F(x) = \int_{a}^{x} f(t) \, dt$$

is differentiable for all $x \in (a, b)$, and

$$\frac{d}{dx}F(x) = \frac{d}{dx}\int_{a}^{x}f(t)\,dt = f(x).$$

Definition 5.1 (Indefinite Integrals). $F(x) = \int f(x) dx$ is a family of functions such that $\frac{d}{dx}F(x) = f(x)$.

Theorem 5.2 (Fundamental Theorem of Calculus: Evaluation). Let f be a continuous function on [a, b] then the function, and F be a function such that $\frac{d}{dx}F(x) = f(x)$, then

$$\int_{a}^{b} f(t) dt = F(b) - F(a) = F(x) \Big|_{a}^{b}.$$

5.1 Properties of Integrals

Theorem 5.3 (Max-Min Inequality). Let m be the minimum value of f on [a, b] and M be the maximum value of f on [a, b], then

$$m(b-a) \le \int_{a}^{b} f(x) \, dx \le M(b-a)$$

Theorem 5.4 (Domination). If $f(x) \ge g(x)$ for all $x \in [a, b]$, then

$$\int_{a}^{b} f(x) \, dx \ge \int_{a}^{b} g(x) \, dx$$

Theorem 5.5 (Mean Value Theorem for Definite Integrals). If f is a continuous function on [a, b], then there exists at least one point $c \in [a, b]$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

In other words, the continuous function f attains its average value at least once on [a, b].

5.2 Techniques of Integration

Theorem 5.6 (Integration by Substitution). Let u = g(x) be a continuous and differentiable function over an interval, let f be continuous over the range of g on that interval, and let F be a function such that $\frac{d}{dx}F(x) = f(x)$. Then,

$$\int f(g(x)) g'(x) \, dx = \int f(u) \, du.$$

Proof 5.1 (Integration by Substitution). Let u = g(x) be a continuous and differentiable function over an interval, and let f be a continuous function over the range of g on that interval.

Since

$$u = g(x) \implies du = g'(x) \, dx,$$

then

$$\int f(\underbrace{g(x)}_{u}) \underbrace{g'(x) \, dx}_{du} = \int f(u) \, du.$$

Theorem 5.7 (Integration By Parts). Let u and v be continuous and differentiable functions, then

$$\int uv' \, dx = \int (uv)' \, dx - \int vu' \, dx$$
$$= uv - \int vu' \, dx.$$

Proof 5.2 (Integration by Parts). Let u and v be continuous and differentiable functions. Then, by the Product Rule, we have

 $(uv)' = uv = vu' + uv' \implies uv' = (uv)' - vu'.$

Integrating both sides with respect to x,

$$\int uv' \, dx = \int (uv)' \, dx - \int vu' \, dx$$
$$= uv - \int vu' \, dx.$$

6 Applications of Integration

Theorem 6.1 (Length of Curves). Let f be function that is continuous on [a, b] and differentiable on (a, b). Then, the length of the curve on [a, b] is given by

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx.$$

Remark. See the proof/derivation in Appendix A.6.

6.1 Volume of Solids of Revolution

Theorem 6.2 (Volume of Solids of Revolution: Disk/Washer Method). The volume of the solid revolved on [a, b] around an axis parallel to the *x*-axis is given by

$$V = \int_{a}^{b} \pi((R(x))^{2} - (r(x))^{2}) \, dx$$

where R(x) is the outer radius and r(x) is the inner radius of the washer.

Remark. The disk method is similar to the washer method, except the inner radius r(x) is 0.

Theorem 6.3 (Volume of Solids of Revolution: Cylindrical Shell Method). The volume of the solid revolved on [a, b] around an axis perpendicular to the x-axis on is given by

$$V = \int_{a}^{b} 2\pi r(x)h(x) \, dx,$$

where r(x) is the radius and h(x) is the height of the cylinder.

Note that both the disk/washer and cylindrical shell methods can be performed and then integrated with respect to the y-axis, which may be helpful for some solids.

6.2 Improper Integrals

Definition 6.1 (Improper Integrals: Infinity). If f is continuous on $[a, \infty)$, then the improper integral $\int_a^{\infty} f(x) dx$ is defined as

$$\int_{a}^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \, dx$$

Similarly for $(-\infty, a]$, we define $\int_{-\infty}^{a} f(x) dx = \lim_{t \to -\infty} \int_{t}^{a} f(x) dx$.

If the limit exists, then we say that the integral converges, otherwise it diverges.

Remark. For a continuous function f on $[a, \infty)$, if $\int_a^{\infty} f(x) dx$ converges, we must have $\lim_{x\to\infty} f(x) = 0$.

Remark. For a continuous function f on $(-\infty, \infty)$, the improper integral $\int_{-\infty}^{\infty} f(x) dx$ means we consider 2 improper integrals

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{c} f(x) \, dx + \int_{c}^{\infty} f(x) \, dx$$

for some constant c.

The integral $\int_{-\infty}^{\infty} f(x) dx$ converges only if both $\int_{-\infty}^{c} f(x) dx$ and $\int_{c}^{\infty} f(x) dx$ converge.

Definition 6.2 (Improper Integrals: Undefined Point). If a function f is continuous at every point of the interval [a, b] except at a, then the improper integral is defined as

$$\int_{a}^{b} f(x) \, dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x) \, dx.$$

Similarly, if f is continuous at every point of the interval [a, b] except at b, then the improper integral is defined as

$$\int_a^b f(x) \, dx = \lim_{t \to b^-} \int_a^t f(x) \, dx.$$

If the limit exists, then we say that the integral converges, otherwise it diverges.

Remark. If a function f is continuous on [a, b] except at a point $c \in (a, b)$, then

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

A Proofs

As I have not yet had formal education on proof writing, proofs in this document are not intended to be rigorous or advanced.

Proof A.1 (*l'Hôpital's Rule* — Simple Version). Let c be an element of the real numbers system (\mathbb{R}) , and let f and g be real-valued functions, differentiable at c.

Case: $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0$ Since f and g are differentiable at c, they are also continuous at c. By definition, point continuity at c implies that $\lim_{x\to c} f(x) = f(c) = 0$ and $\lim_{x\to c} g(x) = g(c) = 0$. So,

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{\frac{f(x)}{x-c}}{\frac{g(x)}{x-c}} = \lim_{x \to c} \frac{\frac{f(x)-0}{x-c}}{\frac{g(x)-0}{x-c}} = \lim_{x \to c} \frac{\frac{f(x)-f(c)}{x-c}}{\frac{g(x)-g(c)}{x-c}} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

Proof A.2 (Derivative of a^x). Let a be a constant. If we let $y = a^x$ then dy/dx is its derivative. Using Implicit Differentiation:

$$\ln y = \ln a^{x}$$
$$= x \ln a$$
$$\frac{d}{dx} \ln y = \frac{d}{dx} x \ln a$$
$$\frac{1}{y} \frac{dy}{dx} = \ln a$$
$$\frac{dy}{dx} = y \ln a$$
$$= a^{x} \ln a.$$

Proof A.3 (Derivative of e^x). Using the Limit Definition of the Derivative, it is possible to determine the derivative of e^x .

$$\frac{d}{dx}e^x = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$
$$= \lim_{h \to 0} \frac{e^x e^h - e^x}{h}$$
$$= \lim_{h \to 0} \frac{e^x (e^h - 1)}{h}$$
$$= e^x \cdot \lim_{h \to 0} \frac{e^h - 1}{h}$$
$$= e^x$$

 $\lim_{h\to 0}\frac{e^h-1}{h}=1$ can be determined graphically (or through l'Hôpital's Rule).

Proof A.4 (Derivative of $\log_a x$). Implicit Differentiation can be used to dermine the derivative of $y = \log_a x$.

$$y = \log_a x$$
$$x = a^y$$
$$\frac{d}{dx}x = \frac{d}{dx}a^y$$
$$1 = a^y \ln a \cdot \frac{dy}{dx}$$
$$\frac{dy}{dx} = \frac{1}{a^y} \cdot \frac{1}{\ln a}$$
$$= \frac{1}{a^{\log_a x}} \cdot \frac{1}{\ln a}$$
$$= \frac{1}{x} \cdot \frac{1}{\ln a}.$$

Proof A.5 (Increasing and Decreasing Functions). Let f be continuous on [a,b] and differentiable on (a,b), and let x_1 and x_2 be any two points on [a,b] with $x_1 < x_2$. Applying the Mean Value Theorem to f on $[x_1, x_2]$ gives

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$$

for some c in (x_1, x_2) .

The left and right side of the equation must be equal and have the same sign. Since $x_1 < x_2 \implies x_2 - x_1 > 0$. This means the left side must have

the same sign as f'(c). We can conclude the following:

(a) if $f(x_2) > f(x_1)$, then $f(x_2) - f(x_1) > 0$ and f'(c) > 0, and

(b) if $f(x_2) < f(x_1)$, then $f(x_2) - f(x_1) < 0$ and f'(c) < 0.

So, if f'(c) > 0 for all c in (a, b), then $f(x_2) > f(x_1)$ (for all x_2 and x_1 in [a, b] with $x_1 < x_2$), meaning f is increasing on [a, b]. A similar procedure applies for f'(c) < 0.

Proof A.6 (Length of Curves). Let y = f(x) be a continuous on [a, b] and differentiable on (a, b). Splitting the interval into n subintervals of equal length, the length of the curve on the *i*th subinterval is given by

$$\Delta L_i = \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2}$$
$$= \sqrt{1 + \left(\frac{\Delta y_i}{\Delta x_i}\right)^2} \cdot \Delta x_i$$

So, the length on the entire interval is

$$L \approx \sum_{i=1}^{n} \Delta L_i = \sum_{i=1}^{n} \sqrt{1 + \left(\frac{\Delta y_i}{\Delta x_i}\right)^2} \cdot \Delta x_i.$$

By the Mean Value Theorem, we have that there exists an $x_i^* \in (x_{i-1}, x_i)$ such that

$$f'(x_i^*) = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} = \frac{\Delta y_i}{\Delta x_i}.$$

Then, by the definition of integrals,

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{1 + (f'(x_i^*))^2} \cdot \Delta x_i$$
$$= \int_a^b \sqrt{1 + (f'(x))^2} \, dx.$$